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Disclination asymmetry in two-dimensional nematic liquid crystals
with unequal Frank constants
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The behavior of a thin film of nematic liquid crystal with unequal Frank constants is discussed. Distinct
Frank constants are found to imply unequal core energies+ftf2 and —1/2 disclinations. Even so, a
topological constraint is shown to ensure that the bulk densities of the two types of disclinations are the same.
For a system with free boundary conditions, such as a liquid membrane, unequal core energies simply renor-
malize the Gaussian rigidity and line tensi$81063-651X96)06712-§

PACS numbd(s): 61.30—v

[. INTRODUCTION long-ranged contribution to the core energy of each defect.
For a system above the isotropic-ordered transition, this dif-
This paper discusses the disclination-mediated isotropicference in core energies can be substantial and would seem
ordered transition in a thin film of nematic liquid crystal. The to lead to different densities of 1/2 and— 1/2 disclinations.
focus is on the case where the bend and splay Frank coms the correlation length grows near the isotropic-ordered
stants are distinct. The free energy of this system is given ttransition, the core energy becomes negligible compared to
lowest order byf1] the logarithmically diverging piece, and the disclinations pair
into dislocations. At the transition, the densitiesto1/2 and
—1/2 disclinations must both become equal to the density of
dislocations. In fact, Green’s theorem implies that under all
(1)  conditions the difference between the numbertdf/2 and
—1/2 disclinations can scale at most as the circumference of
Heren is the orientation of the nematic molecule and is ofthe system. The natural way for this to happen is

unit length. This free energy can alternatively be expressed ,,—n_,,~cR/¢, where¢ is the correlation length, and

Kk k
H= [ axay v noy) P [ dxavxnooy)

in terms of the orientation of the molecules as the prefactor depends on difference of exponentials of core
3 A energies. This constraint implies thatl/2 disclinations oc-
_ 2, 2 2_ 2 cur with the same density in a large system.
=— +65)+ = — ) yor=tile
H Zf dx dy( 05+ 6y) 2[ dx dycos 20)(6y~ 65) The ground-state energies df1/2 disclinations are de-

rived in Sec. Il. The energies are found to be logarithmically
_Af dx dysin(26) 6,6, , 2) diverging With unequal prefactors. It. is shown in Sec. Il that
these coefficients should renormalize to the same value at
\ long wavelengths due to renormalization &fto zero. The
whereJ=(ky+k3)/2, A=(k,—ks)/2, and the subscripts de- free energies of- 1/2 disclinations in the ordered phase are
note derivatives. If t_he two Frank constants were equal, th'?iirectly calculated by perturbation theory in Sec. IV, and the
free energy would simply be that of théY model. Forthe . 15 gisclinations are found to differ by a core energy con-

symmetric nematics considered here, however, the naturglp tion, An approximate calculation of the disclination den-
defects aret 1/2 disclinations rather than the 1 disclina- sity in the isotropic phase is described in Sec. V. Phe/2

tions of the conventionak-Y model. It will be shown that  giscjinations are shown to occur with equal densities for
the presence of nonzed causes the ground-state energiesigrge systems. In fact, the number asymmetry is shown to

of +1/2 disclinations to differ byO(A?). The disclination scale only linearly with the system size. This issue is ex-
energies diverge logarithmically in the system size, but withy|ored in Sec. VI with Monte Carlo calculations on a lattice
unequal coefficients. The elementary Kosterlitz-Thoules$,odel. The disclination number asymmetry is indeed found

energy-entropy balance thus seems to lead to different prog pe proportional to the circumference of the system. Sec-
liferation temperatures for these defects. This famous arguion Vil concludes with a discussion of these results.
ment[2] predicts that a+1/2 or —1/2 defect proliferates

whenever the free energy to create a disclination,

Fi12AR)=E . 12(R) = 2kgTIn(R/ag) or F_15(R)=E_1%(R) -

ok.TIN(Riay). becomes negative. Here. (R) and Il. GROUND-STATE ENERGIES OF +1/2 DISCLINATIONS

E_1(R) are disclination energies as a function of the sys- The ground-state energies df1/2 disclinations in the

tem sizeR, andag is a microscopic cutoff. Hamiltonian(2) will be logarithmically diverging in the size
In fact, thermal fluctuations of the nematics drive the twoof the system. The coefficient in front of the logarithm is

Frank constants to the same value at long wavelengths, smlculated in this section. The coefficient is determined

that there is a unique Kosterlitz-Thouless transition temperasolely by the properties of thé field far from the disclina-

ture. The essential effect of nonzekois to create a distinct tion, vanishing if thed field vanishes at infinity and diverg-
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ing unless thed field goes to a constant. The ground-state
configuration, therefore, must havé(r,¢)~0(¢$) as
r—oo, With this form, the energy is given by

H~HgIn(R/ay) as R—x, (3

with
1 (2w
Ho=§fo dgo'?(¢){I+Aco§2¢—26(¢)]}. (4
A disclination of strengtts is defined by
A
6(¢)=s¢p+ 7 01(9), (5)

where #,( ) is continuous. The condition of a ground-state
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-1.0

2n

geometry, without the assumption of rotational symmetry,

can be written as

6Fq

> ~0= —JV20+Asin(20)(0;— 05+ 20y,) +Acog 26)

X(Ogx— Oyyt26,6,). (6)
This equation implies that
A
6= ao+jal+0(A2/J2), 7
with
VZGOZO,
V26, =sin(200) (65, — 05+ 260,) + €O 26;)
X ( Ooxx— 60yy+ 2 00x‘90y)- (8)
These equations are solved by
B _ (2—s9)ssiM2¢4(s—1)]
00( ¢)_S¢v 01( ¢)_ 4(1_52) (9)
for a disclination of strengtls.
For s=+1/2, Eq.(9) simplifies to
3.
0:($)=— zsing (10
and leads to an energy of
Ho=2 o 11
0= ~ 353 TO ) (1D
Similarly, for s= —1/2, Eq.(9) simplifies to
0 =2 3 12
1($)= zeSiN(34) (12
and leads to an energy of
Ho= T2 2570 at 13

FIG. 1. 6 versus¢ for a s=+ 1/2 disclination.

The general result for the deviation fielt- 6, can be
expressed in terms of elliptic integrals of the third kii&].
Results for the angle field have been presented elseVidhere
To give the reader some feel for how larger valuesAof
distort the ground-state geometry, the functidfe) is
shown for as= +1/2 (Fig. 1) and as= — 1/2 (Fig. 2) discli-
nation. These geometries were computed by defiritg)
on a grid and numerically minimizing Edq4). Direct inte-
gration of Eq.(6) produced identical results. Extreme differ-
ences between the two Frank constants can substantially dis-
tort the T=0 geometries. Figure 3 shows the ground-state
energies associated with different ratios of the Frank con-
stants fors=*+1/2. One can see that ttse= + 1/2 disclina-
tion completely screens out either splay or bend as the asso-
ciated Frank constank, or k3, respectively, becomes large:

Ho"" ’7Tk3/2 as kl—)OO,
(14)

Ho"‘"TTkl/Z as k3—>00.

The s=—1/2 disclination, on the other hand, is unable to
completely remove unfavorable bend or splay:
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FIG. 2. 0 versus¢ for a s= —1/2 disclination.
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FIG. 3. E/J versusA for s=+1/2 (dashed lingands=—1/2
(solid line).

H0~019]k1 as kl—>°o,

H0~019]k3 as k3—>%_ (15)

Ill. RG FLOW EQUATION FOR A

The isotropic-ordered transition does not occuiat0,

and so it is the free energies of the two disclinations that
should govern their densities in the isotropic phase. This is-
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3A [yy
M

J 1 P
H[l/f]zzf a2 T

A 3y 2X(Wo—yh) Ay,
+ZJ[_ < -

r r

A ” 3y Byw(yi—yd) 12xwxz/fy}
T8l T -

r r
A
+1—2f
(17)

The renormalization oA\ is tracked by integrating ouf on

a momentum shell to first order if/J and watching how
terms from they® expression contribute to terms in the
expression. Thes expression can be written as

3miA [k, -
tom" g | K, (18)

3xyt
3

r r

12y g2 (2= y3) ) 24x¢2¢xwy}

where[, meansfd?k/(2)2. The §° expression can be bro-
ken down into

tlz—wiAfk e (27)28(ky+ko+kz+ky)
Kqiy ~ “ “
xkily¢<k2)¢<k3)¢(k4),

t2=_27T|Af (277)26(k1+k2+k3+k4)

kikoksky

Kqy ~ - -
xkig¢<k2>¢<kg>¢<k4><kgxk4x—ke,yk4y>,

t3:_47T|Af (27T)25(k1+k2+k3+k4)

kqkokgky
Kix~ o~ o
xk—}zzf(kz)w(ka)w(km—k3Xk4y>. (19)

The momenta in the shell.—dk.<k<k; can then be inte-
grated over with the result

67 Tkdk,

. ky"
(toh=— WIAL? P(—k) 12m AL

sue is addressed here by looking at the renormalization of

A due to thermal fluctuations around an isolated disclination.
For as=+1/2 disclination the angle order parameter is

expressed as

O(r, @)= pl2+ (1, ). (16)

The function ¢(r,$) is single valued and smooth. The
Hamiltonian(2) is expanded in powers af, with the result

(t2)1=0,
(t3);=0. (20)
This result implies
A'=A- ar % (21
7J K

Defining dk./k.=dlI, the flow equation results:
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dA AT IV. DISCLINATION FREE ENERGIES
ar =——. (22 IN ORDERED PHASE
wJ
While the renormalization-group calculations show how
J is not renormalized t@(A). A becomes irrelevant at the isotropic-ordered transition, they
The same calculation can be performed fosa—1/2  do not directly show how the disclination densities scale near
disclination, using the relation the transition. To estimate the 1/2 disclination densities,
expressions are needed for the free energies of isolated dis-
0(r,d)=—dl2+ Y(r, ). (23 clinations. Perturbation theory is here used to calculate di-

rectly these free energies in the ordered phase. The results
The Hamiltonian(2) is expanded in powers af, with the  should also be applicable to correlated regions within a mac-

result roscopically disordered phase near the isotropic-ordered tran-
sition.
J 1 , | 5A y3—3x2y Tf;e free e.nergy.of.a d_isclination will be ev_aluated to
HW]:EJ arz Ty TJ —5 ¥ O(A?). Equation(2) is first integrated by parts with the re-
sult

50— 3xy")§?  2x( W+ ) LAY ‘fo‘r/fy}

+Af
4 r° r r

=3 xavot - [ oxasmznna-

LA f 5(3x°y—y*)y®  BYy(¥y—us) A
6 re r _Ef dx dycos(26) by, . (28)
12X(r/flvllxl»//y A 5(3Xy2_X3) ’/’4
T + 1—2J T Although @ is discontinuous in the presence of a disclination,
the result is the same if Eq16) or (23) is used and the
12x¢2(¢;§+ 1/1)2() 24y¢21/fxl/;y integration by parts done in terms ¢f A cumulant expan-
+ ; - : : (24)  sion is used for the free energy:
o . . . . 1
The renormalization oA is again tracked by integrating out F=Eg+(6H)pc— §<(5H)2>°°/T+ . (29

¢ on a momentum shell to first order iI¥J and watching
how terms from the)® expression contribute to terms in the

i expression. The flow equation that results is Here the averages are done with respect to the reference
system with HamiltoniarH, indicated by subscript zero,
dA AT and are connected, indicated by subscdpiThe functional
s (25 S6H is H—H,. The reference system is chosen to be

(30

One can see thah renormalizes in the same way about Ho[lﬂ]:%f dr %+¢§+ lpf, :
+1/2 disclinations. In fact, the same flow equation describes r
the renormalization ofA in the absence of disclinations].
The renormalization of the couplinand the disclination
fugacity y can be studied with the correlation function ap-
proach used for the standaxdY model[6]. The result, com-

bined with the results above, is

where§=s¢+ .
Specializing to the case of s=+ 1/2 disclination, the
perturbation becomes

Ay Ay
5H[¢]=fdr ar ~Oasin(2y) - cos{2¢)(¢yy Px)

dT/J
—g =T (yag)?+ 0(A%y* y?A),

Ax AX
- —C05(2l//)<//xy 3005(29/1) —Sln(2(//)

A
—=—AT/(7d)+O(A2,y?A),

Ay
dl X (thyy= o) + 52 SIN20) Uy (31)
dya3 .
TR 2_ — yao"’ O(y?A,y3). (26) A short calculation shows
.. . . <5H>0c:O- (32
One can see that at the critical point the renormalized cou-
pling is Jg/T=8/ar. FurthermoreA scales as The first nonzero contribution to the free energy is, therefore,
O(A?). The form of Eq.(31), with three terms even iy and
~A%(&lag) M4, (27)  three terms odd, simplifies the evaluation @5H)?)o..

Even so, there are 12 Gaussian averages that must be per-
where the correlation length is given By agexp(). formed. A typical term is
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fd dr(cog 2 ) 220122
110 2(COg 244(r 1) [hex(11)COS 245(1 2) 11hyy (T 2) )oc Hr 3=2xw 2T 22
:ZJ drldr2e4X(r12)4X(O)[[Xxx(rlz)_Xxx(O)][Xxy(rlz) f{y/r?’}:zwi sing,
Flylr}=2mising/k>. (36)

1
_Xxy(o)]+ ZXXXX)(r12)

+2f drydr e~ X112 = 4x(©)
The first of these transforms is well defined fox@<2. The

relation is valid for allz by analytic continuation from the

X[ = [xxx(T12) + Xxx(0) 1L xxy(F 12) + Xxy(0) ] relation F{V?f}= —k?f(k). With these definitions, the first
integral becomes

1
+ Zxxxxy(rlz)} , (33 2l (1-2/2)
2T (22)

2,2
_A"% faindg|2 z-2
l,= 16 fk|2msm¢| 2ak

wherer ,=|r,—r,| and
12=[r1— 1  A%72 2I'(1-2/2) 1—(Rlag)
T T8 27°(2/2) z
X(k)——z

A7z T(1-2/2)(1+2/2) 1-(Rlag)~* 3
8 27T (2+2/2) z - @7

T
x(r)=5—5In(R/r), The second integral becomes

T I =A2 2fdr dr(rlz) 1Y
x(0)=5—5In(R/ag). (34) 216 ) 1% a rifp
A?72a} , 2T (=122
With the definitionz=2T/(7J), the first integral in Eq(33) 16 fk K2 2% (2+ 2/2)
scales like R/ag) % and the second term scales like
(Rl/ag) “?*(R/ag)?. Both terms must in principle be evalu- A%7?7% 2T'(—1—2/2) 1—(Rlag) 2
ated. However, all 12 terms that contain the factor T8 2T (2+22) 7z
e~ (12=4x(0) cancel byx«<y symmetry. The symmetry
r,<r, is applied to the other 12 terms with the result _ A’r?z I'(1-2/2) 1-(Rlag)~* 39)
32 2T (2+2/2)(1+2/2) z
Y1Y2
f drdr o {(8H)oc= 16f dr,dr,e*x(112 [ 3 rg] The following identity will be useful in evaluating the third
172 integral:
Y1 Y2
+[ [ny("lz) Xxx "12)] z  1-—(rlag) ™ “
x(r)=—Zlim——, (39
4, 5 o
X1 X2 5
_l’_ J—
16ﬁ rzxxy(rlz)] which implies
Y1Y2 z
+[ T —=Vv* (rlz)] V“X(r):ZIim a(a+2)%(rlag) " 4. (40)
a—0

+[ B Y1 Y2[ny (r19) = Xxx(r12)] Using this result, one finds

Y1 X2 -1 -zy4 _1 ; 2 k*
83, Xxy(r12)” 2 RV =g lim alat 2) a2y
=141+ 1541y, (35) 4mk* T [1— (z+ @)/2]
27T [(z+ ) /2]
with the redefinitiony(r1,) = — (z/4)In(r,,/ag). The four in- >
tegralsl ;I represent integration over the four terms in the _ mk/2, z=0 (41)
curly brackets. 0, z#O.
These integrals can now be evaluated. This will be done
in Fourier space, and the following Fourier transforfmwill The terml 5, therefore, vanishes for nonzero temperatures. It

be helpful: is convenient to break the fourth integral into two parts
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Jdrldrzyl Y2 a—
0

A short calculation shows

[Xxx(rlz)_ny(rlz)]a

(6H)oc=0, (49
_ Y1 X2 e so that the first nonzero contribution to the free energy is
lan= f drldrz Xof(T12)- - (42) O(A?). As before, averages that lead to terms with
e~ (12 =4x(0) cancel byx«y symmetry. Also as before,
The following trick is used to evaluate these terms: the term containing thE*y(r) vanishes at nonzero tempera-
ture. After some simplification, one finds

2

r 1) = Xyy(N)]= lim g1 535 = p)r A
f drdr5((6H)?)gc=1 16f drydr,ex("1?)

a—0

{faf2}

z
=§r‘z‘zcos{2¢). (43

4f1 [ny(r12) Xxx(rlz)]]
In this form, the Fourier transforms can be evaluated, with

the result 8fl Xxy(rlz)H (50)
a8 [ |2mising|? | wz I'(1-2/2)
Of | | ( ) 5(2¢)kzm wheref;=(y>—3x?y;)/r>. The result
2,2 - - 16
_ A%z T(1-2/2) 1—-(R/ap)™* (44 f(k)ziw(—6sir¢+8co§¢sin¢+§sirﬁ¢) (51)
16 27'(2+2z/2) z '
Slmllarly will be used.
' The integral(50) is split into the three bracketed pieces.
2micosh| mz The first integral is
lap= @ _T) A2 -z
lg=—— f drodr,| =] f,f
F( 2) 5 16 142 aO 112
X SIN(2) K oyt
2HK S o7 202) 2T (1-2/2)
_ = f|1‘(k)|2277kZ e
A7’z T(1-2/2) 1-(Rlay)* s 16 Ji 271 (212)
16 27T(2+2/2) z A2727 T(1-2/2)(1+2/2) 1—(Rlag) 2
= z (52
Combining all these results, one finds for the free energy of 72 27T (2+2/2) z
a +1/2 disclination at the origin ) )
The second integral is
c WJI (Riag) A% T(1-2/2) (8+2 .
=—INn dg) — z P
+12= g 0732 2T (2+2/2) 1+z/2 lg= 16f dr,dr, ) 4fl [ny(rlz) Xxx(F12)]
1-(R/ag) ? . .,
X———— + O(A®). (46) A aof?* 27r|S|n¢> 772 2K I'1-z/2)
B e cod24) 27T (2+2/2)

The ground-state energy is found to be
g oy A%7% T(1-22) 1-(Rlag)*

(53

w)  9mwA? 5 48 27I'(2+12z/2) z
Fiipo~ 733 In(R/ag) +O(A®) as T—0, (47
The third integral is
in agreement with Eq11). 5 _,
For the case of a= — 1/2 disclination, the perturbation to | A Jdr dr 8f (1)
consider is " 16 12 r, XXV 1
x2y A%ag (. = 2micosp| mz
5H[¢]——f dr S|rx2¢>+—coszw><¢yy Yie) =-— fkf W—— |~ 7
2x 3xy?—x°3 2K I'(1—2z/2)
_TCOE(Z(II)(ﬂxy-Fr—SCOE(Z{/I) X sin(2¢) m
_ A?m%z T(1-2/2) 1-(Rlag)~? .

z
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Combining all these results, one finds for the free energy of m , 1 )
a —1/2 disclination at the origin H= ZZJ_ J drQj +Zij2k f dr(4,Qjk)
d A% T(1-2/2) . J’
- _ + dr QsiQ; 959 Qi » 60
F_1 2 In(R/ap) 2880 27T (2+ 212) J2i,j§,;,t QSIQ(] s thJ (60)
<| 16+ 22+ 1—(R/a0)‘Z+O(A3). WherejlzJ/4Q§ andj,=A/16Q3. Expressed in terms of the
1+2/2 z (55) unigue componentg, andq,, the Hamiltonian becomes

_n 2, g2+ 1 2 002 L2 4 o2
. H—2 dr(q1+q2)+2 dr(gi+ gy, + a5+ dz,) + 6H,
The ground-state energy is given by

(61
m)  25wA?
et 3 . where
Y (4 88 )In(R/ao)+O(A) as T 0’(56)
5H=j2J dr[qi(qlxx_quy)"'q%(Qlyy_qlxx)
in agreement with Eq(13). _
The difference in free energies af1/2 disclinations is, *+200102(G2xx~ A2yy) T 491020 1xy
therefore, given by +ZQ§CI2xy— Z‘ﬁ‘hxy]- (62)
wA? T(1-2/2) 7+2z1—(Rlag) 2 The vector fieldq=(q,,9,) will have disclinations of
Frap=Fo1p= J 2T (2+22) 36 7z strength+1 when the# field has disclinations of strength

+1/2. The density of disclinations can be written[8%
+0(A3). (57

1
Near the isotropic-ordered transition, the coupling renormal- p(r)=52| sgridewig;(r)]o(r=ry), (63)
izes tozg=1/4 andJr/T=8/, so one finds
whereq(r,)=0. This expression can be simplified as

(F 112~ F 412/ T~—0.8891A/T)[1- (¢/ag) ]

1 1
(A)—E. (AT p(r) =5 5(q)dew;q;(r) =7 5(d1) 8(d2) (d1xG2y ~ AayG2x)-
(64)

+lEc

+1/2 —1/2

as {—. (59 Furthermore, the number density is given by
Additional microscopic core energies that may be distinct for 1
the two different disclinations have been explicitly added in [p(r)] =§5(ql) 8(02)| A1x02y — 01y 02yl - (65
this equation. By comparing E@58) with Egs. (11), (13),
and(27), one sees that the appropriate finite-size scaling re-
placement iSA%|H(R/ao)—>A2[l—(R/ao)72]/Z. This relation
gives a very good approximation to EG8).

These densities will be evaluated by perturbation theory
in A. The reference system will be E@1), with SH=0. It
is clear thatg, andq, are independent Gaussian fields with
the correlation functionyo(r)=T/(27j1)Ko(r/§), where
V. DISCLINATION DENSITIES the correlation length is given bg=(j,/m)Y2. Averages

IN THE ISOTROPIC PHASE that involve the facto(qg,) will occur. This factor can es-

Co I . . , sentially be absorbed into the Gaussian weight with the trick
The disclination density in the isotropic phase is calcu-

lated in this section, taking into account interactions between IDIqIP[q]8(q(0)f[q]
disclinations. In the isotropic phase, the free energy can be (8(q(0)f[a])o= DIalp
expressed in terms of the order paramé#@r /Pla]P[q]
, . _JDlalP[q]5(q(0)f[q]
Q=Q (nx_ny o ) - (COE{Z‘” sin(26) JDa1P[a15((0)
—x0 ={o .
2n,n,  nj—ng sin(26) - —cos26) [ PLa]P[4]18(q(0))
X 66
z(ql a2 ) 59 IDLa]PLa] (69
92~ whereP[q]D[q] is the probability of a given field configu-

ration. This result is defined to be
An expression that reduces to Ef) in the low-temperature,

fixed-Qy phase is (flaD) £ 8(@(0))o=[27xo(0)] "X f[al)s. (67
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It turns out that the weighP[q]5(q(0)) still implies thatq 1
is a Gaussian field, but with the new correlation function (8(a(0))é(a(r))yo= 2oz e (74
[9-17] 27 x5(0) = xo(r)]

The field correlation function is now given g1
<Q(r1)CI("2)>§EX(r1,rz):Xo(|"1_r2|) g 1]

—xo(T) xo(F2)/ xo(0). (68) x(r1,r2)=xo(|Ir1=r2)) =[xo(r1) xo(r)xo(r2)

. o . — xo(r Nxo(|ra—r
The average number density of disclinations in the limit Xo(ro)xo(xollr2=r)

A—0 is first evaluated. The following term will arise: = xo([ra=rDxo(r)xo(r2)+ xo([r1—r]) xo(r)
(8(61(0)) 5(05(0))| A1,(0) A2,(0) — G2, (0)U(0) Yo X xol|r2= D ILx3(0) = x5(1)1 ™. (75
=[27x0(0)1™ (| d1x(0) 02, (0) — 1, (0) Aok (0) |} 5. This form implies
(69

(91a(0)015(1) 5=~ X0up(1) ~ X0a(F) Xo(F) X0s(F)/[ X5(0)
Using Eq.(68), one can see that all of the variables in this —3(N] (76)
average are independently Gaussian, with variance Xott)J:

7=~ Xox0) =~ Xoyy(0) =~ x0rr(0). The probability dis- \yith these results one finds
tribution for P(q1402y=X) is Ko(X/)/(7y), and the prob-

ability  distribution  for  P(Qq,02y—Q1y02x=Y) IS 1 {
exp(—|y|//y)/2vy. With this result the average can be carried ry= r r
ou?( Iyl )2y g go(r) ZWZr[Xg(O)_X%(r)] Xor(") xorr (1)
Xo(N) x5 (1) }
—Xorr (0) + . 7
2]y = ooy +O(A). (70 X303 7

Per Eq.(72) this result will be integrated over. The first

The effect of nonzerd on the average disclination asym- - -
g y term can be integrated by parts, with the result

metry is now evaluated. From Sec. IV, one knows that the
essential effect of nonzerd is to create distinct core ener-
gies for+1/2 and— 1/2 disclinations. This effect is modeled drge(r)= I|m
by replacing Eq(62) with

(1)
ZX:—(O)Z—ZﬂPl)o- (78)

This result, along with Eqs(72) and (73), implies that the
oH = _Zf dru(r)p(r). (7D densities of+1/2 and— 1/2 disclinations remain equal even
in the presence of distinct core energies. A more careful
The parametep is related to the core energy difference andconclusion is that the average disclination density is zero
there will be a unique mapping from? to « for smallA.  within the bulk region. It can be nonzero near the boundary
The core energy difference is considered to be nonzero anlgecause the integral in Eq72) will be cut off before
constant within a large region of radit® inside a macro- go(r) is negligible. This contribution is estimated to be
scopically large system. This is done because the macro-
scopic disclination asymmetry is identically zero for a sys- (n N_yp)=2 f
tem with the periodic boundary conditions implied by the ‘' V2~ "-1UZT <K
Fourier analysis. A grand canonical ensemble with a fluctu-
ating disclination asymmetry arises when considering a re- ~2muRE(|pl)/2
gion of the periodic system. The disclination asymmetry is ~c[exp— BE. . )—exp— BE. )]
now calculated for small: 112 112

_ardr’(p(r)p(r")o+ O(u?)

XR/¢ as E<R— . (79
— 2
<p(0)>_<p(0)>0+ZMJKRdr(p(o)p(r))OCJF O(u)- The scaling|p|)~c&~2 has been used. It arises because the
(72 disorder created by unbound disclinations defines the corre-
lation length.
The disclination asymmetry is seen to be related to the
disclination correlation function by a fluctuation-dissipation VI. MONTE CARLO CALCULATIONS
theorem. The disclination correlation function is given[BY ON A LATTICE MODEL

4(p(0)p(r))o=2{|p|)o+go(r), (73 This section describes both a lattice model for nematics

with unequal Frank constants and a Monte Carlo procedure

where thes function comes from the self-terms in the aver- for evaluating the properties of the model. The fundamental

age, andy(r) is a radially symmetric function that accounts degrees of freedom are spins of unit length on a square lat-

for correlations between distinct disclinations. To calculatetice. The Hamiltonian has both nearest- and next-nearest-
0o(r) the same trick as before is used. One has neighbor couplings:
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The disclination asymmetry is equal to the sum of this den-

N n, N sity over the entire lattice. By the analog of Green’s theorem,
it can be written as a sum af;; over the boundary of the
n, n; ny lattice.

The correlation length and the correlation time will be
measured during a Monte Carlo run to monitor convergence.
The position correlation function is defined as

FIG. 4. Definition of spins used in HamiltonidB0).
g(N=N"2> {[n(x)-n(x—n1*~1/2}, (83

J A .
H=22 2 [1-(n-m)?l+ g2 2 (-1) _
Poi<s A where ther andx are integer vectors on thid XN square
o212 42 2 2 lattice. Free boundary conditions imply that there will be
X[1=(ni-ny) ][N+ nj—niy —nj, significant effects of the boundary in this correlation func-
A ' tion. The correlation length is defined in terms of the position
+ gz 42 . (= D)I[1—(ni-np)ZI[nixniy + njnyy 1. correlation function by
i <j<

(80 ngdrrg(r)/ fdrg(r). (84

The sum over is over sites on a square lattice. The sum over ) . .
i=1 to 8 is defined according to Fig. 4. Terms that wouldHere|r| ranges from 0 to #°N. Fast Fourzlerztran_sforms will
placej off the lattice are ignored. This Hamiltonian satisfies P€ used to compute this quantity @(N“In“N) time [13].
the symmetryn;<>—n;. The couplings between spins are The time correlation function is defined as

symmetric under the interchangg—n; . Finally, in the limit

of a very small lattice spacing, E¢80) reduces to Eq(2). f(t)=> m(t")-m(t' —t), (85)
Numerical values of E(80) agree with those from Eq$3) t

and (4) for specific forms of thed field.

This model will be equilibrated with a simple Metropolis Where them(t) =X,m(x,t) is the vector sum of the single-
move that perturbs individual spins. Specifically, a vectorheaded spins at MCE A correlation time could be defined
randomly distributed in a disk of radiusis added to a ran- by analogy with Eq(84), but noise inf(t) for larget causes
domly chosen spin. A value= 10 will be found to be satis- this approach to be unsatisfactory. Instead, the correlation
factory. The new spin is then normalized to unit length. If thetime 7 is defined by the smallest value of for which
energy of the lattice is lowered by using this new spin, thef (7)/f(0)<1/e.
new spin is adopted. Otherwise, the new spin is adopted with The interesting observable is the asymmetry between the
a probability exp(E,—E,)/T]. This move satisfies detailed number of +1/2 and —1/2 disclinations. This asymmetry
balance, and so this Monte Carlo procedure will sample thavill be small, and it will be important to quantify the statis-
Boltzmann distributior[12]. A natural unit of equilibration tical —error in this observable. The difference
time, the Monte Carlo stefMCS), is N? iterations of this  dnN=n,1,—N_1;, Must scale adN/& by Green’s theorem.
move on aNXxX N lattice. Most runs last for 800 000 MCS The variance of this observable should scale with the observ-
after an initial equilibration of 80 000 MCS. For the case ofable and inversely with the number of independent sam-
A=2, 3200000 MCS are performed after an equilibrationplings:
time of 320000 MCS. The properties of the lattice are
sampled every 50 MCS.

The number of disclinations can be counted by looking at
all (N—1)? plaquettes on the lattice and determining
whether a disclination of strength-1/2, —1/2, or 0 is whereT is the total number of MCS. This variance is inde-
present at each plaquette. This determination is made by firgendent ofA for small A, and so the constart can be
definingn,-n, to be a counterclockwise ordering of the spinsdetermined from the case wheke=0. In this limit, the val-
around the plaquette. Double-headed spins are converted intes of 7 and ¢ can also be determined from the case 0.

1/2

N/& ’ (86)

Tir

(T&n:C

single-headed spins byixznfx_nfy andm;,=2nyn;, . The Figure 5 shows the correlation length as a function of
following angle is defined for the plaquette: temperature for various lattice sizes. The correlation length
grows at lower temperatures. It saturates at a fraction of the

t=0p1+ syt Ouat Os, 81) lattice size for even lower values of the temperature. The

isotropic-ordered transition temperature can be identified by
the inflection point of this curve. Finite-size scaling can be
used to extrapolate the inflection point as a function dF tty
N—oo. The result is approximatel§g/T=4. Figure 6 shows
the correlation time, in units of 50 MCS, as a function of
temperature for various lattice sizes. This time also grows for

ot lower temperatures and larger lattices. In fact, near the criti-
S=—. (82 . 4 Py

cal point, the expected scaling-cé&“ is observed.

where 6;;=6¢,—6; is constrained to be in the range
(—,7), and 6; is the angle associated with spim . The
disclination density at this plaquette is defined by
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FIG. 5. Correlation length as a function of temperature for the £, 7. Disclination density as a function of temperature for the
case]=3,A=0, andN=4 (short-dashed line8 (dot-dashed line  c4561=3, A=0, andN=4 (short-dashed line8 (dot-dashed ling
16 (long-dashed ling and 32(solid line). 16 (long-dashed line and 32(solid line).

Figure 7 shows the observed number of disclinations as a ¢ jijtation of a finite-size lattice prevents the true

function of temperature for various lattice sizes. As eXpeCtedSCaling of the disclination asymmetry near the isotropic-

the number of disclinations decreases with decr.easmg ten?)'rdered transition from being observed. One can, however,
perature. These curves should converge to a universal curv

i the limit N—=_ This curve is the total number of discli- Gbserve the asymmetry for these finite-size systems. Figure 8

) . shows the asymmetry functiop, 1p,—p_4,, for A=2 for
nat|on.s., toih pound and unbound, S0 it does not ga to zero §Qrious lattices sizes. Figure 9 shows the analogous results
the critical point. The curves for differed, however, do

intersect at a unique value dfT. This value can be extrapo- for 4=3. This obseryable can be exfcrapola!te_d asa function

lated as a function of N to N.—>:>o to determine the true oflllN to N— oo to estimate the behav_|orfor mﬁmtg systems.
S . . i It is clear that the extrapolated result is zero, within statistical

critical point. The result islg/T=3.4. This observable ap- error. In fact, one can see that the disclination number asym-

pears tc_) produce a more reliable critical point than does th?netry scales only with the circumference of the system.
correlation length.

Not shown are the correlation length and disclination den-
sities for nonzerdA. The dominant dependence @nwas VIIl. DISCUSSION
through A2. Nonzero values ofA increased the density of

disclinations and decreased the correlation length and tim? We see that there is a statistical symmetry in this model.

his symmetry enforcep, 1o+ p_1,=0 in the limit of a
arge system size, even in the presence of non2erdhis
ymmetry arises because the disclination number asymmetry

Furthermore, analysis showed that the observed disclinatio
density scaled likp~cé& 2, at least for largel, where the
disclinations were unpaired. These qualitative effects aré
consistent with Eqs(46) and (55).
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FIG. 8. Disclination asymmetry as a function of temperature for
FIG. 6. Correlation time as a function of temperature for thethe casel=3, A=2, andN=4 (short-dashed line 8 (dot-dashed
casel=3,A =0, andN=4 (short-dashed line 8 (dot-dashed ling line), 16 (long-dashed ling and 32(solid line). The error bars are
16 (long-dashed ling and 32(solid line). + one standard deviation.
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tion in both cases, and the disclination free energy is loga-
rithmic in the correlation length in both cases. For the nem-
atic, unequal Frank constants cause the free energies of
+1/2 and— 1/2 disclinations to differ. They only differ by a
core energy, however, due to the renormalizatio\ ofFor
the membrane, local buckling causes the free energies of
five-fold and sevenfold disclinations to differ. They, too,
»»»»»»» only differ by a core energy, due to renormalization of the
% membrane rigidity. As with nematic liquid crystals, there is a
-0.0020 - % ] topological theorem that relates the number of fivefold and
’ sevenfold disclinations to an integral over a boundds.
The natural way for this to happenng—n;~cR/é,, where
&, is now the hexatic correlation length. The prefactor again
depends on the difference between exponentials of core en-
10 15 20 ergies. It seems, then, that within the liquid phase of a mem-
T brane with hexatic symmetry, differing core energies simply
renormalize the line tension and Gaussian rigidity. Near the
FIG. 9. Disclination asymmetry as a function of temperature forliquid to hexatic transition, however, constraints imposed by
the casel=3, A=3, andN=4 (short-dashed line 8 (dot-dashed a non-Euclidean membrane geometry frustrate the formation
line), 16 (long-dashed ling and 32(solid line). The error bars are  of hexatic order. The system can relieve this frustration by
* one standard deviation. flattening the membrane. One might expect, for example,

can be written as an intearal of bounded terms over the that the preferred size of a vesicle undergoing a hexatic to
9 pqiquid transition should scale like the hexatic correlation

riphery of the system, bY Green s theorem. This relation, Ir‘Iength. This conjecture is a worthy subject of future calcula-
turn, means that the disclination number asymmetry can

scale at most with the linear size of the system. Indeed, thi'gons.
scaling was observed in the Monte Carlo calculations. With a
definition of disclinations not susceptible to Green’s theo-
rem, this statistical symmetry would not be present. In this
case, one would generally expect the disclination asymmetry It is a pleasure to acknowledge discussions with David
to scale withN?/&? instead ofN/&. Nelson and Georg Foltin. This research was supported by the

There are many parallels between the problem of a nemNational Science Foundation through Grant Nos. DMR-
atic liquid crystal with unequal Frank constants and a hexati®417047 and CHE-9403114 and through the MRSEC pro-
membrang[14,15. Disclinations mediate a melting transi- gram through Grant No. DMR-9400396.
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