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The behavior of a thin film of nematic liquid crystal with unequal Frank constants is discussed. Distinct
Frank constants are found to imply unequal core energies for11/2 and21/2 disclinations. Even so, a
topological constraint is shown to ensure that the bulk densities of the two types of disclinations are the same.
For a system with free boundary conditions, such as a liquid membrane, unequal core energies simply renor-
malize the Gaussian rigidity and line tension.@S1063-651X~96!06712-8#

PACS number~s!: 61.30.2v

I. INTRODUCTION

This paper discusses the disclination-mediated isotropic-
ordered transition in a thin film of nematic liquid crystal. The
focus is on the case where the bend and splay Frank con-
stants are distinct. The free energy of this system is given to
lowest order by@1#

H5
k1
2 E dx dy@¹•n~x,y!#21

k3
2 E dx dyu¹3n~x,y!u2.

~1!

Heren is the orientation of the nematic molecule and is of
unit length. This free energy can alternatively be expressed
in terms of the orientation of the molecules as

H5
J

2E dx dy~ux
21uy

2!1
D

2E dx dycos~2u!~uy
22ux

2!

2DE dx dysin~2u!uxuy , ~2!

whereJ5(k11k3)/2, D5(k12k3)/2, and the subscripts de-
note derivatives. If the two Frank constants were equal, this
free energy would simply be that of theX-Y model. For the
symmetric nematics considered here, however, the natural
defects are61/2 disclinations rather than the61 disclina-
tions of the conventionalX-Y model. It will be shown that
the presence of nonzeroD causes the ground-state energies
of 61/2 disclinations to differ byO(D2). The disclination
energies diverge logarithmically in the system size, but with
unequal coefficients. The elementary Kosterlitz-Thouless
energy-entropy balance thus seems to lead to different pro-
liferation temperatures for these defects. This famous argu-
ment @2# predicts that a11/2 or 21/2 defect proliferates
whenever the free energy to create a disclination,
F11/2(R)5E11/2(R)22kBTln(R/a0) or F21/2(R)5E21/2(R)
22kBTln(R/a0), becomes negative. HereE11/2(R) and
E21/2(R) are disclination energies as a function of the sys-
tem sizeR, anda0 is a microscopic cutoff.

In fact, thermal fluctuations of the nematics drive the two
Frank constants to the same value at long wavelengths, so
that there is a unique Kosterlitz-Thouless transition tempera-
ture. The essential effect of nonzeroD is to create a distinct

long-ranged contribution to the core energy of each defect.
For a system above the isotropic-ordered transition, this dif-
ference in core energies can be substantial and would seem
to lead to different densities of11/2 and21/2 disclinations.
As the correlation length grows near the isotropic-ordered
transition, the core energy becomes negligible compared to
the logarithmically diverging piece, and the disclinations pair
into dislocations. At the transition, the densities of11/2 and
21/2 disclinations must both become equal to the density of
dislocations. In fact, Green’s theorem implies that under all
conditions the difference between the number of11/2 and
21/2 disclinations can scale at most as the circumference of
the system. The natural way for this to happen is
n11/22n21/2;cR/j, wherej is the correlation length, and
the prefactor depends on difference of exponentials of core
energies. This constraint implies that61/2 disclinations oc-
cur with the same density in a large system.

The ground-state energies of61/2 disclinations are de-
rived in Sec. II. The energies are found to be logarithmically
diverging with unequal prefactors. It is shown in Sec. III that
these coefficients should renormalize to the same value at
long wavelengths due to renormalization ofD to zero. The
free energies of61/2 disclinations in the ordered phase are
directly calculated by perturbation theory in Sec. IV, and the
61/2 disclinations are found to differ by a core energy con-
tribution. An approximate calculation of the disclination den-
sity in the isotropic phase is described in Sec. V. The61/2
disclinations are shown to occur with equal densities for
large systems. In fact, the number asymmetry is shown to
scale only linearly with the system size. This issue is ex-
plored in Sec. VI with Monte Carlo calculations on a lattice
model. The disclination number asymmetry is indeed found
to be proportional to the circumference of the system. Sec-
tion VII concludes with a discussion of these results.

II. GROUND-STATE ENERGIES OF 61/2 DISCLINATIONS

The ground-state energies of61/2 disclinations in the
Hamiltonian~2! will be logarithmically diverging in the size
of the system. The coefficient in front of the logarithm is
calculated in this section. The coefficient is determined
solely by the properties of theu field far from the disclina-
tion, vanishing if theu field vanishes at infinity and diverg-
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ing unless theu field goes to a constant. The ground-state
configuration, therefore, must haveu(r ,f);u(f) as
r→`. With this form, the energy is given by

H;H0ln~R/a0! as R→`, ~3!

with

H05
1

2E0
2p

dfu82~f!$J1Dcos@2f22u~f!#%. ~4!

A disclination of strengths is defined by

u~f!5sf1
D

J
u1~f!, ~5!

whereu1(f) is continuous. The condition of a ground-state
geometry, without the assumption of rotational symmetry,
can be written as

dF0

du
5052J¹2u1Dsin~2u!~uy

22ux
212uxy!1Dcos~2u!

3~uxx2uyy12uxuy!. ~6!

This equation implies that

u5u01
D

J
u11O~D2/J2!, ~7!

with

¹2u050,

¹2u15sin~2u0!~u0y
2 2u0x

2 12u0xy!1cos~2u0!

3~u0xx2u0yy12u0xu0y!. ~8!

These equations are solved by

u0~f!5sf, u1~f!5
~22s!ssin@2f~s21!#

4~12s2!
~9!

for a disclination of strengths.
For s511/2, Eq.~9! simplifies to

u1~f!52
3

4
sinf ~10!

and leads to an energy of

H05
pJ

4
2
9pD2

32J
1O~D3/J2!. ~11!

Similarly, for s521/2, Eq.~9! simplifies to

u1~f!5
5

36
sin~3f! ~12!

and leads to an energy of

H05
pJ

4
2
25pD2

288J
1O~D3/J2!. ~13!

The general result for the deviation fieldu2u0 can be
expressed in terms of elliptic integrals of the third kind@3#.
Results for the angle field have been presented elsewhere@4#.
To give the reader some feel for how larger values ofD
distort the ground-state geometry, the functionu(f) is
shown for as511/2 ~Fig. 1! and as521/2 ~Fig. 2! discli-
nation. These geometries were computed by definingu(f)
on a grid and numerically minimizing Eq.~4!. Direct inte-
gration of Eq.~6! produced identical results. Extreme differ-
ences between the two Frank constants can substantially dis-
tort the T50 geometries. Figure 3 shows the ground-state
energies associated with different ratios of the Frank con-
stants fors561/2. One can see that thes511/2 disclina-
tion completely screens out either splay or bend as the asso-
ciated Frank constant,k1 or k3, respectively, becomes large:

H0;pk3/2 as k1→`,

H0;pk1/2 as k3→`. ~14!

The s521/2 disclination, on the other hand, is unable to
completely remove unfavorable bend or splay:

FIG. 1. u versusf for a s511/2 disclination.

FIG. 2. u versusf for a s521/2 disclination.
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H0;0.191k1 as k1→`,

H0;0.191k3 as k3→`. ~15!

III. RG FLOW EQUATION FOR D

The isotropic-ordered transition does not occur atT50,
and so it is the free energies of the two disclinations that
should govern their densities in the isotropic phase. This is-
sue is addressed here by looking at the renormalization of
D due to thermal fluctuations around an isolated disclination.

For a s511/2 disclination the angle order parameter is
expressed as

u~r ,f!5f/21c~r ,f!. ~16!

The function c(r ,f) is single valued and smooth. The
Hamiltonian~2! is expanded in powers ofc, with the result

H@c#5
J

2E S 1

4r 2
1cx

21cy
2D 1

3D

4 E yc

r 3

1
D

4E F2
3xc2

r 3
1
2x~cy

22cx
2!

r
2
4ycxcy

r G
1

D

6E F2
3yc3

r 3
2
6yc~cy

22cx
2!

r
2
12xccxcy

r G
1

D

12E F3xc4

r 3
2
12yc2~cy

22cx
2!

r
1
24xc2cxcy

r G .
~17!

The renormalization ofD is tracked by integrating outc on
a momentum shell to first order inT/J and watching how
terms from thec3 expression contribute to terms in thec
expression. Thec expression can be written as

t05
3p iD

2 E
k

ky
k

ĉ~2k!, ~18!

where*k means*d
2k/(2p)2. Thec3 expression can be bro-

ken down into

t152p iDE
k1k2k3k4

~2p!2d~k11k21k31k4!

3
k1y
k1

ĉ~k2!ĉ~k3!ĉ~k4!,

t2522p iDE
k1k2k3k4

~2p!2d~k11k21k31k4!

3
k1y
k1
3 ĉ~k2!ĉ~k3!ĉ~k4!~k3xk4x2k3yk4y!,

t3524p iDE
k1k2k3k4

~2p!2d~k11k21k31k4!

3
k1x
k1
3 ĉ~k2!ĉ~k3!ĉ~k4!~2k3xk4y!. ~19!

The momenta in the shellkc2dkc,k,kc can then be inte-
grated over with the result

^t1& l52p iDE
k

ky
k

ĉ~2k!
6pTkcdkc
J~2p!2kc

2 ,

^t2& l50,

^t3& l50. ~20!

This result implies

D85D2
DT

pJ

dkc
kc

. ~21!

Definingdkc /kc5dl, the flow equation results:

FIG. 3. E/J versusD for s511/2 ~dashed line! ands521/2
~solid line!.
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dD

dl
52

DT

pJ
. ~22!

J is not renormalized toO(D).
The same calculation can be performed for as521/2

disclination, using the relation

u~r ,f!52f/21c~r ,f!. ~23!

The Hamiltonian~2! is expanded in powers ofc, with the
result

H@c#5
J

2E S 1

4r 2
1cx

21cy
2D 1

5D

4 E y323x2y

r 5
c

1
D

4E F5~x323xy2!c2

r 5
1
2x~cy

21cx
2!

r
1
4ycxcy

r G
1

D

6E F5~3x2y2y3!c3

r 5
1
6yc~cy

22cx
2!

r

2
12xccxcy

r G1
D

12E F5~3xy22x3!c4

r 5

1
12xc2~cy

21cx
2!

r
2
24yc2cxcy

r G . ~24!

The renormalization ofD is again tracked by integrating out
c on a momentum shell to first order inT/J and watching
how terms from thec3 expression contribute to terms in the
c expression. The flow equation that results is

dD

dl
52

DT

pJ
. ~25!

One can see thatD renormalizes in the same way about
61/2 disclinations. In fact, the same flow equation describes
the renormalization ofD in the absence of disclinations@5#.

The renormalization of the couplingJ and the disclination
fugacity y can be studied with the correlation function ap-
proach used for the standardX-Y model@6#. The result, com-
bined with the results above, is

dT/J

dl
5p3~ya0

2!21O~D2,y4,y2D!,

dD

dl
52DT/~pJ!1O~D2,y2D!,

dya0
2

dl
5S 22

pJ

4TD ya021O~y2D,y3!. ~26!

One can see that at the critical point the renormalized cou-
pling is JR /T58/p. Furthermore,D scales as

DR
2;D2~j/a0!

21/4, ~27!

where the correlation length is given byj5a0exp(l).

IV. DISCLINATION FREE ENERGIES
IN ORDERED PHASE

While the renormalization-group calculations show how
D becomes irrelevant at the isotropic-ordered transition, they
do not directly show how the disclination densities scale near
the transition. To estimate the61/2 disclination densities,
expressions are needed for the free energies of isolated dis-
clinations. Perturbation theory is here used to calculate di-
rectly these free energies in the ordered phase. The results
should also be applicable to correlated regions within a mac-
roscopically disordered phase near the isotropic-ordered tran-
sition.

The free energy of a disclination will be evaluated to
O(D2). Equation~2! is first integrated by parts with the re-
sult

H5
J

2E dx dy~ux
21uy

2!2
D

4E dx dysin~2u!~uyy2uxx!

2
D

2E dx dycos~2u!uxy . ~28!

Althoughu is discontinuous in the presence of a disclination,
the result is the same if Eq.~16! or ~23! is used and the
integration by parts done in terms ofc. A cumulant expan-
sion is used for the free energy:

F5E01^dH&0c2
1

2
^~dH !2&0c/T1•••. ~29!

Here the averages are done with respect to the reference
system with HamiltonianH0, indicated by subscript zero,
and are connected, indicated by subscriptc. The functional
dH is H2H0. The reference system is chosen to be

H0@c#5
J

2E dr S 1

4r 2
1cx

21cy
2D , ~30!

whereu5sf1c.
Specializing to the case of as511/2 disclination, the

perturbation becomes

dH@c#5E dr F Dy

4r 3
sin~2c!2

Dy

4r
cos~2c!~cyy2cxx!

2
Dx

2r
cos~2c!cxy1

Dx

4r 3
cos~2c!2

Dx

4r
sin~2c!

3~cyy2cxx!1
Dy

2r
sin~2c!cxyG . ~31!

A short calculation shows

^dH&0c50. ~32!

The first nonzero contribution to the free energy is, therefore,
O(D2). The form of Eq.~31!, with three terms even inc and
three terms odd, simplifies the evaluation of^(dH)2&0c .
Even so, there are 12 Gaussian averages that must be per-
formed. A typical term is
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E dr1dr2^cos@2c~r1!#cxx~r1!cos@2c~r2!#cxy~r2!&0c

52E dr1dr2e
4x~r12!24x~0!H @xxx~r 12!2xxx~0!#@xxy~r 12!

2xxy~0!#1
1

4
xxxxy~r 12!J 12E dr1dr2e

24x~r12!24x~0!

3H 2@xxx~r 12!1xxx~0!#@xxy~r 12!1xxy~0!#

1
1

4
xxxxy~r 12!J , ~33!

wherer 125ur12r2u and

x̂~k!5
T

Jk2
,

x~r !5
T

2pJ
ln~R/r !,

x~0!5
T

2pJ
ln~R/a0!. ~34!

With the definitionz52T/(pJ), the first integral in Eq.~33!
scales like (R/a0)

2z and the second term scales like
(R/a0)

22z(R/a0)
z. Both terms must in principle be evalu-

ated. However, all 12 terms that contain the factor
e24x(r12)24x(0) cancel byx↔y symmetry. The symmetry
r1↔r2 is applied to the other 12 terms with the result

E dr1dr2^~dH !2&0c5
D2

16E dr1dr2e
4x~r12!F H y1r 13 y2r 23 J

1H 4y1r 1 y2r 2 @xyy~r 12!2xxx~r 12!#
2

116
x1
r 1

x2
r 2

xxy
2 ~r 12!J

1H y1r 1 y2r 2 ¹4x~r 12!J
1H 24

y1
r 1
3

y2
r 2

@xyy~r 12!2xxx~r 12!#

28
y1
r 1
3

x2
r 2

xxy~r 12!J G
[I 11I 21I 31I 4 , ~35!

with the redefinitionx(r 12)52(z/4)ln(r12/a0). The four in-
tegralsI 1–I 4 represent integration over the four terms in the
curly brackets.

These integrals can now be evaluated. This will be done
in Fourier space, and the following Fourier transformsF will
be helpful:

F$r2z%52pkz22
2G~12z/2!

2zG~z/2!
,

F$y/r 3%52p isinf,

F$y/r %52p isinf/k2. ~36!

The first of these transforms is well defined for 0,z,2. The
relation is valid for allz by analytic continuation from the
relationF$¹2f %52k2 f̂ (k). With these definitions, the first
integral becomes

I 15
D2a0

z

16 E
k
u2p isinfu22pkz22

2G~12z/2!

2zG~z/2!

5
D2p2

8

2G~12z/2!

2zG~z/2!

12~R/a0!
2z

z

5
D2p2z

8

G~12z/2!~11z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~37!

The second integral becomes

I 25
D2z2

16 E dr1dr2S r 12a0 D
2z24 y1

r 1

y2
r 2

5
D2z2a0

z

16 E
k
U 2p isinf

k2 U22pkz12
2G~212z/2!

241zG~21z/2!

5
D2p2z2

8

2G~212z/2!

241zG~21z/2!

12~R/a0!
2z

z

5
D2p2z

32

G~12z/2!

2zG~21z/2!~11z/2!

12~R/a0!
2z

z
. ~38!

The following identity will be useful in evaluating the third
integral:

x~r !52
z

4
lim
a→0

12~r /a0!
2a

a
, ~39!

which implies

¹4x~r !5
z

4
lim
a→0

a~a12!2~r /a0!
2a24. ~40!

Using this result, one finds

z21F$r2z¹4x%5
1

4
lim
a→0

a~a12!2
k4

~z1a!2~z1a12!2

3
4pkz1a22G@12~z1a!/2#

2z1aG@~z1a!/2#

5H pk2/2, z50

0, zÞ0.
~41!

The termI 3, therefore, vanishes for nonzero temperatures. It
is convenient to break the fourth integral into two parts
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I 4a5
D2

4 E dr1dr2
y1
r 1
3

y2
r 2

S r 12a0 D
2z

@xxx~r 12!2xyy~r 12!#,

I 4b52
D2

2 E dr1dr2
y1
r 1
3

x2
r 2

S r 12a0 D
2z

xxy~r 12!. ~42!

The following trick is used to evaluate these terms:

r2z@xxx~r !2xyy~r !#5 lim
a→0

z

4a
r2z~]x

22]y
2!r2a

5
z

2
r2z22cos~2f!. ~43!

In this form, the Fourier transforms can be evaluated, with
the result

I 4a5
D2a0

z

4 E
k

u2p isinfu2

k2 S 2
pz

2 D cos~2f!kz
G~12z/2!

2zG~21z/2!

5
D2p2z

16

G~12z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~44!

Similarly,

I 4b52
D2a0

z

2 E
k
~2p isinf!*

2p icosf

k2 S 2
pz

4 D
3sin~2f!kz

G~12z/2!

2zG~21z/2!

5
D2p2z

16

G~12z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~45!

Combining all these results, one finds for the free energy of
a 11/2 disclination at the origin

F11/25
pJ

4
ln~R/a0!2

pD2

32J

G~12z/2!

2zG~21z/2! S 812z1
1

11z/2D
3
12~R/a0!

2z

z
1O~D3!. ~46!

The ground-state energy is found to be

F11/2;S pJ

4
2
9pD2

32J D ln~R/a0!1O~D3! as T→0, ~47!

in agreement with Eq.~11!.
For the case of as521/2 disclination, the perturbation to

consider is

dH@c#5
D

4E dr Fy323x2y

r 5
sin~2c!1

y

r
cos~2c!~cyy2cxx!

2
2x

r
cos~2c!cxy1

3xy22x3

r 5
cos~2c!

2
x

r
sin~2c!~cyy2cxx!2

2y

r
sin~2c!cxyG . ~48!

A short calculation shows

^dH&0c50, ~49!

so that the first nonzero contribution to the free energy is
O(D2). As before, averages that lead to terms with
e24x(r12)24x(0) cancel byx↔y symmetry. Also as before,
the term containing the¹4x(r ) vanishes at nonzero tempera-
ture. After some simplification, one finds

E dr1dr2^~dH !2&0c5I 21
D2

16E dr1dr2e
4x~r12!F $ f 1f 2%

1H 4 f 1 y2r 2 @xyy~r 12!2xxx~r 12!#J
1H 28 f 1

x2
r 2

xxy~r 12!J G , ~50!

where f i5(yi
323xi

2yi)/r i
5 . The result

f̂ ~k!5 ipS 26sinf18cos2fsinf1
16

3
sin3f D ~51!

will be used.
The integral~50! is split into the three bracketed pieces.

The first integral is

I 55
D2

16E dr1dr2S r 12a0 D
2z

f 1f 2

5
D2a0

z

16 E
k
u f̂ ~k!u22pkz22

2G~12z/2!

2zG~z/2!

5
D2p2z

72

G~12z/2!~11z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~52!

The second integral is

I 65
D2

16E dr1dr2S r 12a0 D
2z

4 f 1
y2
r 2

@xyy~r 12!2xxx~r 12!#

5
D2a0

z

4 E
k
f̂ * ~k!

2p isinf

k2
pz

2
cos~2f!kz

G~12z/2!

2zG~21z/2!

5
D2p2z

48

G~12z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~53!

The third integral is

I 75
D2

16E dr1dr2S r 12a0 D
2zS 28 f 1

x2
r 2

Dxxy~r 12!

52
D2a0

z

2 E
k
f̂ * ~k!

2p icosf

k2 S 2
pz

4 D
3sin~2f!kz

G~12z/2!

2zG~21z/2!

5
D2p2z

48

G~12z/2!

2zG~21z/2!

12~R/a0!
2z

z
. ~54!
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Combining all these results, one finds for the free energy of
a 21/2 disclination at the origin

F21/25
pJ

4
ln~R/a0!2

pD2

288J

G~12z/2!

2zG~21z/2!

3S 1612z1
9

11z/2D12~R/a0!
2z

z
1O~D3!.

~55!

The ground-state energy is given by

F21/2;S pJ

4
2
25pD2

288J D ln~R/a0!1O~D3! as T→0,
~56!

in agreement with Eq.~13!.
The difference in free energies of61/2 disclinations is,

therefore, given by

F11/22F21/25
pD2

J

G~12z/2!

2zG~21z/2!

712z

36

12~R/a0!
2z

z

1O~D3!. ~57!

Near the isotropic-ordered transition, the coupling renormal-
izes tozR51/4 andJR /T58/p, so one finds

~F11/22F11/2!/T;20.8891~D/T!2@12~j/a0!
21/4#

1@Ec11/2
~D!2Ec21/2

~D!#/T

as j→`. ~58!

Additional microscopic core energies that may be distinct for
the two different disclinations have been explicitly added in
this equation. By comparing Eq.~58! with Eqs. ~11!, ~13!,
and ~27!, one sees that the appropriate finite-size scaling re-
placement isDR

2 ln(R/a0)→D2@12(R/a0)
2z#/z. This relation

gives a very good approximation to Eq.~58!.

V. DISCLINATION DENSITIES
IN THE ISOTROPIC PHASE

The disclination density in the isotropic phase is calcu-
lated in this section, taking into account interactions between
disclinations. In the isotropic phase, the free energy can be
expressed in terms of the order parameter@7#

Q5Q0S nx22ny
2 2nxny

2nxny ny
22nx

2D 5Q0S cos~2u! sin~2u!

sin~2u! 2cos~2u!
D

[S q1 q2

q2 2q1
D . ~59!

An expression that reduces to Eq.~2! in the low-temperature,
fixed-Q0 phase is

H5
m

4(
i , j

E drQi j
21

j 1
4(
i , j ,k

E dr ~] iQjk!
2

1 j 2 (
i , j ,s,t

E drQsiQt j]s] tQi j , ~60!

wherej 15J/4Q0
2 and j 25D/16Q0

3. Expressed in terms of the
unique componentsq1 andq2, the Hamiltonian becomes

H5
m

2 E dr ~q1
21q2

2!1
j 1
2 E dr ~q1x

2 1q1y
2 1q2x

2 1q2y
2 !1dH,

~61!

where

dH5 j 2E dr @q1
2~q1xx2q1yy!1q2

2~q1yy2q1xx!

12q1q2~q2xx2q2yy!14q1q2q1xy

12q2
2q2xy22q1

2q2xy#. ~62!

The vector fieldq5(q1 ,q2) will have disclinations of
strength61 when theu field has disclinations of strength
61/2. The density of disclinations can be written as@8#

r~r !5
1

2(l sgn@det] iqj~r !#d~r2r l !, ~63!

whereq(r l)50. This expression can be simplified as

r~r !5
1

2
d~q!det] iqj~r !5

1

2
d~q1!d~q2!~q1xq2y2q1yq2x!.

~64!

Furthermore, the number density is given by

ur~r !u5
1

2
d~q1!d~q2!uq1xq2y2q1yq2xu. ~65!

These densities will be evaluated by perturbation theory
in D. The reference system will be Eq.~61!, with dH50. It
is clear thatq1 andq2 are independent Gaussian fields with
the correlation functionx0(r )5T/(2p j 1)K0(r /j), where
the correlation length is given byj5( j 1 /m)

1/2. Averages
that involve the factord(q1) will occur. This factor can es-
sentially be absorbed into the Gaussian weight with the trick

^d~q~0!! f @q#&05
*D@q#P@q#d„q~0!…f @q#

*D@q#P@q#

5
*D@q#P@q#d„q~0!…f @q#

*D@q#P@q#d„q~0!…

3
*D@q#P@q#d„q~0!…

*D@q#P@q#
, ~66!

whereP@q#D@q# is the probability of a given field configu-
ration. This result is defined to be

^ f @q#&d^d„q~0!…&05@2px0~0!#21/2^ f @q#&d . ~67!
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It turns out that the weightP@q#d„q(0)… still implies thatq
is a Gaussian field, but with the new correlation function
@9–11#

^q~r1!q~r2!&d[x~r1 ,r2!5x0~ ur12r2u!

2x0~r 1!x0~r 2!/x0~0!. ~68!

The average number density of disclinations in the limit
D→0 is first evaluated. The following term will arise:

^d„q1~0!…d~q2„0!…uq1x~0!q2y~0!2q1y~0!q2x~0!u&0

5@2px0~0!#21^uq1x~0!q2y~0!2q1y~0!q2x~0!u&d .

~69!

Using Eq.~68!, one can see that all of the variables in this
average are independently Gaussian, with variance
g52x0xx(0)52x0yy(0)52x0rr (0). The probability dis-
tribution for P(q1xq2y5x) is K0(x/g)/(pg), and the prob-
ability distribution for P(q1xq2y2q1yq2x5y) is
exp(2uyu/g)/2g. With this result the average can be carried
out

2^uru&5
2x0rr ~0!

2px0~0!
1O~D!. ~70!

The effect of nonzeroD on the average disclination asym-
metry is now evaluated. From Sec. IV, one knows that the
essential effect of nonzeroD is to create distinct core ener-
gies for11/2 and21/2 disclinations. This effect is modeled
by replacing Eq.~62! with

dH522E drm~r !r~r !. ~71!

The parameterm is related to the core energy difference and
there will be a unique mapping fromD2 to m for small D.
The core energy difference is considered to be nonzero and
constant within a large region of radiusR inside a macro-
scopically large system. This is done because the macro-
scopic disclination asymmetry is identically zero for a sys-
tem with the periodic boundary conditions implied by the
Fourier analysis. A grand canonical ensemble with a fluctu-
ating disclination asymmetry arises when considering a re-
gion of the periodic system. The disclination asymmetry is
now calculated for smallm:

^r~0!&5^r~0!&012mE
r,R

dr ^r~0!r~r !&0c1O~m2!.

~72!

The disclination asymmetry is seen to be related to the
disclination correlation function by a fluctuation-dissipation
theorem. The disclination correlation function is given by@8#

4^r~0!r~r !&052^uru&01g0~r !, ~73!

where thed function comes from the self-terms in the aver-
age, andg0(r ) is a radially symmetric function that accounts
for correlations between distinct disclinations. To calculate
g0(r ) the same trick as before is used. One has

^d„q~0!…d„q~r !…&05
1

2p@x0
2~0!2x0

2~r !#1/2
. ~74!

The field correlation function is now given by@11#

x~r1 ,r2!5x0~ ur12r2u!2@x0~r 1!x0~r !x0~r 2!

2x0~r 1!x0~r !x0~ ur22r u!

2x0~ ur12r u!x0~r !x0~r 2!1x0~ ur12r u!x0~r !

3x0~ ur22r u!#@x0
2~0!2x0

2~r !#21. ~75!

This form implies

^q1a~0!q1b~r !&d52x0ab~r !2x0a~r !x0~r !x0b~r !/@x0
2~0!

2x0
2~r !#. ~76!

With these results one finds

g0~r !5
1

2p2r @x0
2~0!2x0

2~r !#
Fx0r~r !x0rr ~r !

1
x0~r !x0r

3 ~r !

x0
2~0!2x0

2~r !G . ~77!

Per Eq.~72! this result will be integrated overr . The first
term can be integrated by parts, with the result

E drg0~r !5 lim
r→0

x0r~r !

2prx0~0!
522^uru&0 . ~78!

This result, along with Eqs.~72! and ~73!, implies that the
densities of11/2 and21/2 disclinations remain equal even
in the presence of distinct core energies. A more careful
conclusion is that the average disclination density is zero
within the bulk region. It can be nonzero near the boundary
because the integral in Eq.~72! will be cut off before
g0(r ) is negligible. This contribution is estimated to be

^n11/22n21/2&52mE
r ,r 8,R

drdr 8^r~r !r~r 8!&01O~m2!

'2pmRj^uru&/2

;c@exp~2bEc11/2
!2exp~2bEc21/2

!#

3R/j as j!R→`. ~79!

The scalinĝ uru&;cj22 has been used. It arises because the
disorder created by unbound disclinations defines the corre-
lation length.

VI. MONTE CARLO CALCULATIONS
ON A LATTICE MODEL

This section describes both a lattice model for nematics
with unequal Frank constants and a Monte Carlo procedure
for evaluating the properties of the model. The fundamental
degrees of freedom are spins of unit length on a square lat-
tice. The Hamiltonian has both nearest- and next-nearest-
neighbor couplings:
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H5
J

4(i (
j,5

@12~ni•nj !
2#1

D

8(i (
j,5

~21! j

3@12~ni•nj !
2#@nix

2 1njx
2 2niy

2 2njy
2 #

1
D

8(i (
4, j,9

~21! j@12~ni•nj !
2#@nixniy1njxnjy#.

~80!

The sum overi is over sites on a square lattice. The sum over
j51 to 8 is defined according to Fig. 4. Terms that would
place j off the lattice are ignored. This Hamiltonian satisfies
the symmetryni↔2ni . The couplings between spins are
symmetric under the interchangeni↔nj . Finally, in the limit
of a very small lattice spacing, Eq.~80! reduces to Eq.~2!.
Numerical values of Eq.~80! agree with those from Eqs.~3!
and ~4! for specific forms of theu field.

This model will be equilibrated with a simple Metropolis
move that perturbs individual spins. Specifically, a vector
randomly distributed in a disk of radiusr is added to a ran-
domly chosen spin. A valuer510 will be found to be satis-
factory. The new spin is then normalized to unit length. If the
energy of the lattice is lowered by using this new spin, the
new spin is adopted. Otherwise, the new spin is adopted with
a probability exp@(Eo2En)/T#. This move satisfies detailed
balance, and so this Monte Carlo procedure will sample the
Boltzmann distribution@12#. A natural unit of equilibration
time, the Monte Carlo step~MCS!, is N2 iterations of this
move on aN3N lattice. Most runs last for 800 000 MCS
after an initial equilibration of 80 000 MCS. For the case of
D52, 3 200 000 MCS are performed after an equilibration
time of 320 000 MCS. The properties of the lattice are
sampled every 50 MCS.

The number of disclinations can be counted by looking at
all (N21)2 plaquettes on the lattice and determining
whether a disclination of strength11/2, 21/2, or 0 is
present at each plaquette. This determination is made by first
definingn1-n4 to be a counterclockwise ordering of the spins
around the plaquette. Double-headed spins are converted into
single-headed spins bymix5nix

2 2niy
2 andmiy52nixniy . The

following angle is defined for the plaquette:

t5u211u321u431u14, ~81!

where u i j5u i2u j is constrained to be in the range
(2p,p), andu i is the angle associated with spinmi . The
disclination density at this plaquette is defined by

s5
t

4p
. ~82!

The disclination asymmetry is equal to the sum of this den-
sity over the entire lattice. By the analog of Green’s theorem,
it can be written as a sum ofu i j over the boundary of the
lattice.

The correlation length and the correlation time will be
measured during a Monte Carlo run to monitor convergence.
The position correlation function is defined as

g~r !5N22(
x

$@n~x!•n~x2r !#221/2%, ~83!

where ther and x are integer vectors on theN3N square
lattice. Free boundary conditions imply that there will be
significant effects of the boundary in this correlation func-
tion. The correlation length is defined in terms of the position
correlation function by

j5E dr rg~r !Y E drg~r !. ~84!

Hereur u ranges from 0 to 21/2N. Fast Fourier transforms will
be used to compute this quantity inO(N2ln2N) time @13#.
The time correlation function is defined as

f ~ t !5(
t8

m~ t8!•m~ t82t !, ~85!

where them(t)5(xm(x,t) is the vector sum of the single-
headed spins at MCSt. A correlation time could be defined
by analogy with Eq.~84!, but noise inf (t) for larget causes
this approach to be unsatisfactory. Instead, the correlation
time t is defined by the smallest value oft for which
f (t)/ f (0),1/e.
The interesting observable is the asymmetry between the

number of11/2 and21/2 disclinations. This asymmetry
will be small, and it will be important to quantify the statis-
tical error in this observable. The difference
dn5n11/22n21/2 must scale asN/j by Green’s theorem.
The variance of this observable should scale with the observ-
able and inversely with the number of independent sam-
plings:

sdn5cFN/jT/t G1/2, ~86!

whereT is the total number of MCS. This variance is inde-
pendent ofD for small D, and so the constantc can be
determined from the case whereD50. In this limit, the val-
ues oft andj can also be determined from the caseD50.

Figure 5 shows the correlation length as a function of
temperature for various lattice sizes. The correlation length
grows at lower temperatures. It saturates at a fraction of the
lattice size for even lower values of the temperature. The
isotropic-ordered transition temperature can be identified by
the inflection point of this curve. Finite-size scaling can be
used to extrapolate the inflection point as a function of 1/N to
N→`. The result is approximatelyJR /T54. Figure 6 shows
the correlation time, in units of 50 MCS, as a function of
temperature for various lattice sizes. This time also grows for
lower temperatures and larger lattices. In fact, near the criti-
cal point, the expected scalingt;cj2 is observed.

FIG. 4. Definition of spins used in Hamiltonian~80!.
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Figure 7 shows the observed number of disclinations as a
function of temperature for various lattice sizes. As expected,
the number of disclinations decreases with decreasing tem-
perature. These curves should converge to a universal curve
in the limit N→`. This curve is the total number of discli-
nations, both bound and unbound, so it does not go to zero at
the critical point. The curves for differentN, however, do
intersect at a unique value ofJ/T. This value can be extrapo-
lated as a function of 1/N to N→` to determine the true
critical point. The result isJR /T53.4. This observable ap-
pears to produce a more reliable critical point than does the
correlation length.

Not shown are the correlation length and disclination den-
sities for nonzeroD. The dominant dependence onD was
throughD2. Nonzero values ofD increased the density of
disclinations and decreased the correlation length and time.
Furthermore, analysis showed that the observed disclination
density scaled liker;cj22, at least for largeT, where the
disclinations were unpaired. These qualitative effects are
consistent with Eqs.~46! and ~55!.

The limitation of a finite-size lattice prevents the true
scaling of the disclination asymmetry near the isotropic-
ordered transition from being observed. One can, however,
observe the asymmetry for these finite-size systems. Figure 8
shows the asymmetry functionr11/22r21/2 for D52 for
various lattices sizes. Figure 9 shows the analogous results
for D53. This observable can be extrapolated as a function
of 1/N toN→` to estimate the behavior for infinite systems.
It is clear that the extrapolated result is zero, within statistical
error. In fact, one can see that the disclination number asym-
metry scales only with the circumference of the system.

VII. DISCUSSION

We see that there is a statistical symmetry in this model.
This symmetry enforcesr11/21r21/250 in the limit of a
large system size, even in the presence of nonzeroD. This
symmetry arises because the disclination number asymmetry

FIG. 5. Correlation length as a function of temperature for the
caseJ53,D50, andN54 ~short-dashed line!, 8 ~dot-dashed line!,
16 ~long-dashed line!, and 32~solid line!.

FIG. 6. Correlation time as a function of temperature for the
caseJ53,D50, andN54 ~short-dashed line!, 8 ~dot-dashed line!,
16 ~long-dashed line!, and 32~solid line!.

FIG. 7. Disclination density as a function of temperature for the
caseJ53,D50, andN54 ~short-dashed line!, 8 ~dot-dashed line!,
16 ~long-dashed line!, and 32~solid line!.

FIG. 8. Disclination asymmetry as a function of temperature for
the caseJ53, D52, andN54 ~short-dashed line!, 8 ~dot-dashed
line!, 16 ~long-dashed line!, and 32~solid line!. The error bars are
6 one standard deviation.
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can be written as an integral of bounded terms over the pe-
riphery of the system, by Green’s theorem. This relation, in
turn, means that the disclination number asymmetry can
scale at most with the linear size of the system. Indeed, this
scaling was observed in the Monte Carlo calculations. With a
definition of disclinations not susceptible to Green’s theo-
rem, this statistical symmetry would not be present. In this
case, one would generally expect the disclination asymmetry
to scale withN2/j2 instead ofN/j.

There are many parallels between the problem of a nem-
atic liquid crystal with unequal Frank constants and a hexatic
membrane@14,15#. Disclinations mediate a melting transi-

tion in both cases, and the disclination free energy is loga-
rithmic in the correlation length in both cases. For the nem-
atic, unequal Frank constants cause the free energies of
11/2 and21/2 disclinations to differ. They only differ by a
core energy, however, due to the renormalization ofD. For
the membrane, local buckling causes the free energies of
five-fold and sevenfold disclinations to differ. They, too,
only differ by a core energy, due to renormalization of the
membrane rigidity. As with nematic liquid crystals, there is a
topological theorem that relates the number of fivefold and
sevenfold disclinations to an integral over a boundary@16#.
The natural way for this to happen isn52n7;cR/jA , where
jA is now the hexatic correlation length. The prefactor again
depends on the difference between exponentials of core en-
ergies. It seems, then, that within the liquid phase of a mem-
brane with hexatic symmetry, differing core energies simply
renormalize the line tension and Gaussian rigidity. Near the
liquid to hexatic transition, however, constraints imposed by
a non-Euclidean membrane geometry frustrate the formation
of hexatic order. The system can relieve this frustration by
flattening the membrane. One might expect, for example,
that the preferred size of a vesicle undergoing a hexatic to
liquid transition should scale like the hexatic correlation
length. This conjecture is a worthy subject of future calcula-
tions.
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